

وحدة ضمان الجوده

Course Specification	
Course Code: CCE331	Course Title: Algorithms and data structures

(1).Basic information				
Program Title	Computer	Computer and Control		
Department offering the program	Computer	Computer and Control Dept.		
Department offering the course	Computer and Control Dept.			
Course Code	CCE331			
Year/level	second term- 2022/2023 / 4 th level			
Specialization	Major			
Taashing Haung	Total	Practical	Tutorial	Lectures
Teaching Hours	4	2	-	2
Date of approval of Bylaw		202	1	

(2).Co	(2).Course Aims		
No.	Aims		
1.	1. Apply knowledge of of various data structures when constructing a program as well as analytical, critical and systematic thinking abilities to identify and solve real engineering problems using data structure		

(3). L	(3). Learning Outcomes of Course (LOs)		
C1.1	Identify fundamental data structures		
C1.2	understand the basics of search and sort algorithms.		
C2.1	Analyze programing problems		
C2.2	create programs with appropriate data structure and sorting algorithms		
C3.1	Functions as an effective member or leader of diverse engineering teams, including those with multi-level, multi-disciplinary and multi-cultural dimensions.		

(4). Cour	rse Contents				
Week	Topics	Lecture	Tutorial	Practical	Total
No.					
1	Introduction to data structures and the	2			2
	importance of data organization, performance				
	measures				
2	Searching Algorithms (Linear Search, Binary Search)	2		2	4
	Sorting Algorithms (Bubble Sort, Selection Sort,				
	Insertion Sort)				
3	Recursion (Recursive Binary Search)	2		2	4
4	Lists (Static vs. Dynamic Arrays), Pointers,	2		2	4
-	Introduction to Linked Lists	_		_	-
5	Linked lists variants (single, doubly, and	2		2	4
	circular)			_	
6	Stacks & Queues (using static arrays, dynamic	2		2	4
	arrays, and linked lists)				
7	Mid-Term Exam	-		-	-
8	Hash Tables (Hash table, Hash functions, open	2		2	4
	and closed hashing, probing methods)				
9	Research Discussions	2		2	4
10	Trees (General trees, Binary trees, BST, Tree	2		2	4
	Traversal)				
11	Trees (General trees, Binary trees, BST, Tree	2		2	4
	Traversal)				
12	Graphs	2		2	4
13	Priority Queue, Heap, and Heap sort	2		2	4
14	Mini project	2		2	4
15	Practical Exam	-			
16	Final exam				
	total	26	-	24	50

(5). Teaching and Learning methods		
No.	Teaching Method	
1.	Interactive lectures	
2.	Active learning e.g. group discussion, brain storming, demonstration.	
3.	Problem and Project based learning	

4.	Labs
5.	Self-Learning

(6). T	(6). Teaching and Learning methods of Disabled Students		
No.	Teaching Method	Reason	
1.	Additional tutorial		
2.	On line lectures		

(7). Students Assessment

)7.1)7.1(Students Assessment Method		
No.	Assessment Method	Los	
1	Attendance		
2	Reports	C2.1,C2.2,C3.1	
3	Quiz 1 / Quiz 2	C2.1,C2.2,C3.1	
4	mini project	C2.1,C2.2,C3.1	
5	Mid-term Exam	C1.1, C1.2, C2.1,C2.2	
6	Final Practical Exam	C1.1, C1.2, C2.1,C2.2,C2.3	
7	Final Exam	C1.1, C1.2, C2.1,C2.2,C2.3	

)7.2()7.2(Assessment Schedule			
No.	Assessment Method	Weeks		
1	Attendance	Weekly		
2	Reports/ Sheets	Bi-weekly		
3	Quiz 1 / Quiz 2	4& 10		
4	Mini project	15		
5	Mid-term Exam	8		
6	Final Practical Exam	15		
7	Final Exam	16		

)7.3	(Weighting of Assessments			
No.	Assessment Method	Weights %	Weigl	hts
1	Attendance	5%	5	
3	Quiz 1 / Quiz 2	5%	5	
4	mini project	5%	5	50
5	Mid-term Exam	25%	25	
6	Final Practical Exam	10 %	10	
7	Final Exam	50%	50	
	Total 100% 100			

(8). List of References [1]. Data Structures and Algorithm Analysis in C++by Clifford A. Shaffer.

[2].	Data Structures: A Pseudo code Approach with C++ by Richard
[3]	F. Gilberg and Behrouz A. Forouzan - ISBN 053495216X
[4]	Data Structures via C++: Objects by Evolution by A. Michael Berman ISBN –
	0195108434
[5]	Data Structures, Algorithms in C++Second Edition By Adam Drozdek.
[6]	Data Structures and Algorithms in Java second edition by Adama Drozdek

(9).	(9). Facilities required for teaching and learning					
1.	1. Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)					
2.	2. Moodle and Microsoft teams					
3.	Data show					
4.	Lab Facilities and simulation Software(CST)					
).Matrix of Aims and LOs of the Course					
No.	Topics	Aims	LOs			
1.	Introduction to data structures and the importance of data					
	organization, performance measures					
2.	Searching Algorithms (Linear Search, Binary Search)					
	Sorting Algorithms (Bubble Sort, Selection Sort, Insertion	1	C1.1,C1.2			
2	Sort)	_				
3.	Recursion (Recursive Binary Search)	_				
4.	Lists (Static vs. Dynamic Arrays), Pointers, Introduction to					
_	Linked Lists	_				
5.	Linked lists variants (single, doubly, and circular)					
1	Stacks & Queues (using static arrays, dynamic arrays, and					
	linked lists)					
7	Hash Tables (Hash table, Hash functions, open and closed					
8	hashing, probing methods) Research Discussions	_	C2 1			
9		1	C2.1, C2.2			
	Trees (General trees, Binary trees, BST, Tree Traversal)	-	C2.2			
10	Trees (General trees, Binary trees, BST, Tree Traversal)					
11	Graphs	-	62.2.62.4			
12	Priority Queue, Heap, and Heap sort	1	C2.3,C3.1			
13	Hash Tables (Hash table, Hash functions, open and closed					
	hashing, probing methods)					

(11). Matrix of Competencies/ Program LOs with Course LOs					
No.	Competences/ Program LOs	No.	Course LOs		
	Demonstrate a high level of	C1.1	Identify fundamental data		
	competence in identifying, defining		structures		
C1	and solving Computers	C1.2	understand the basics of search		
	and Systems Engineering problems		and sort algorithms.		
C2	Select and apply appropriate	C2.1	Analyze programing problems		
	mathematical tools, computing	C2.2	Create programs with appropriate		
	methods, design techniques and		data structure and sorting		
	tools in Computers and Systems		algorithms		
	Engineering disciplines, for				

	modeling and analyzing Computer and Control systems		
C3	Evaluate different techniques and strategies for solving Computers and Systems Engineering problems.	C3.1	Functions as an effective member or leader of diverse engineering teams, including those with multilevel, multi-disciplinary and multicultural dimensions.

Title	Name	Signature
Course Coordinator	Dr. Marwa Gamal	
Head of Department	Prof.Dr. Eyad Oda	
Date of Approval	2022/ 2023	